Equilibrium points of logarithmic potentials on convex domains

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Equilibrium Points of Logarithmic Potentials on Convex Domains

Let D be a convex domain in C. Let ak > 0 be summable constants and let zk ∈ D. If the zk converge sufficiently rapidly to η ∈ ∂D from within an appropriate Stolz angle then the function ∑ ∞ k=1 ak/(z − zk) has infinitely many zeros in D. An example shows that the hypotheses on the zk are not redundant, and that two recently advanced conjectures are false. M.S.C. 2000 classification: 30D35, 31A...

متن کامل

Equilibrium Points of Logarithmic Potentials Induced by Positive Charge Distributions. I. Generalized De Bruijn-springer Relations

A notion of weighted multivariate majorization is defined as a preorder on sequences of vectors in Euclidean space induced by the Choquet ordering for atomic probability measures. We characterize this preorder both in terms of stochastic matrices and convex functions and use it to describe the distribution of equilibrium points of logarithmic potentials generated by discrete planar charge confi...

متن کامل

Compact Weighted Composition Operators and Fixed Points in Convex Domains

We extend a classical result of Caughran/H. Schwartz and another recent result of Gunatillake by showing that if D is a bounded, convex domain in C, ψ : D → C is analytic and bounded away from zero toward the boundary of D, and φ : D → D is a holomorphic map such that the weighted composition operator Wψ,φ is compact on a holomorphic functional Hilbert space (containing the polynomial functions...

متن کامل

Complex Geodesics on Convex Domains

Existence and uniqueness of complex geodesics joining two points of a convex bounded domain in a Banach space X are considered. Existence is proved for the unit ball of X under the assumption that X is 1-complemented in its double dual. Another existence result for taut domains is also proved. Uniqueness is proved for strictly convex bounded domains in spaces with the analytic Radon-Nikodym pro...

متن کامل

Inflationary models with logarithmic potentials.

We examine innationary universe models driven by scalar elds with logarithmic potentials of the form V () = V 0 p (ln) q. Combining the slow-roll approximation with asymptotic techniques, we identify regions of the potential where innation may occur and obtain analytic expressions for the evolution of the eld and the metric in these cases. We construct a family of exact solutions to the equatio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2007

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-07-08791-6